
Design, implementation and experiment of a YeSQL Web
Crawler

Pierre Jourlin
Laboratoire d’Informatique

d’Avignon
Université d’Avignon et des

pays de Vaucluse
BP 1228, 84911 AVIGNON

CEDEX, France
Pierre.Jourlin@univ-avignon.fr

Romain Deveaud
Laboratoire d’Informatique

d’Avignon
Université d’Avignon et des

pays de Vaucluse
BP 1228, 84911 AVIGNON

CEDEX, France
Romain.Deveaud@univ-

avignon.fr

Eric Sanjuan-Ibekwe
Laboratoire d’Informatique

d’Avignon
Université d’Avignon et des

pays de Vaucluse
BP 1228, 84911 AVIGNON

CEDEX, France
Eric.Sanjuan@univ-avignon.fr

Jean-Marc Francony
UMR PACTE

Université Pierre Mendès
France - Grenoble 2

Grenoble, France
jeanmarc.francony@umrpacte.fr

Françoise Papa
UMR PACTE

Université Pierre Mendès
France - Grenoble 2

Grenoble, France
francoise.papa@umrpacte.fr

ABSTRACT
We describe a novel, “focusable”, scalable, distributed web
crawler based on GNU/Linux and PostgreSQL that we de-
signed to be easily extendible and which we have released
under a GNU public licence. We also report a first use case
related to an analysis of Tweeter’s streams about the french
2012 presidential elections and the URL’s it contains.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms ; Design ; Experimentation

Keywords
Web Crawler; Web Robot; Web Spider; PostgreSQL ; Twit-
ter ; Web ; Social Networks

1. INTRODUCTION
Where scalability is concerned, Apache Nutch R©1 and Her-
itrix2 are probably the best-known and the most-accomplished
open-source web crawlers. They both are sensible choice
for Information Retrieval (IR) researchers who intend to
build large web corpora. They can be configured to spe-
cific needs and can be extended and modified. However, the

1http://nutch.apache.org/
2https://webarchive.jira.com/browse/HER

Java-language source code3 of these two software toolkits
are rather large and complex: 29349 lines of source code for
Apache Nutch (v1.4) and 107377 for Heritrix (v3.1.0). An-
other possible drawback from the researcher’s perspective is
that they both store the data using unconventional systems,
respectively HadoopTMand Internet Archive ARC files.

These systems belongs to the“NoSQL”or“UnQL”approaches,
supported by the assumption that the widely used SQL re-
lational database standard is a inherent cause of scalabil-
ity issues. However, this assumption is contested by several
database experts. For instance, recent developments around
the PostgreSQL project allow it to perform as well as- and
outperforms some - NoSQL databases[3]. This alternative
approach has been named YesQL.

By taking profit of the capabilities of a PostgreSQL server,
we implemented our web crawler in a total of only 911 lines
of C-language code and 200 lines of SQL and PL/pgSQL. At
the time this article was written and as far as we know, this is
the only available webcrawler that is based on PostgreSQL.
The tests we performed have shown that instances of the
crawler could process over 20 millions of URLs in a few days
without beeing noticeably slowed by database operations.
We thus believe this web crawler is well worth considering
by IR researchers and programmers.

2. SOFTWARE DESCRIPTION
The source code repository is located at GitHub4 under a
GNU public license. Everyone can therefore easily download
an up-to-date version of the toolkit, provide user’s feedback,
or join the developer’s team. The crawling system can be
briefly summarized as follows:

3There are alternatives written in Python, e.g. : Mechanize
(36419 lines of code) and Scrapy (23096 lines of code)
4https://github.com/jourlin/WebCrawler



Figure 1: Webcrawler’s organisation

• Links and URLs’ data are stored in a PostgreSQL5

database.

• The user can launch several crawler’s instances on sev-
eral, possibly distant machines.

• Each of crawler’s instance iteratively:

1. fetches a list of URLs to be explored by sending
a simple SQL query to the database;

2. downloads the web pages;

3. extracts new hypertext links to possibly new URLs;

4. sends the new data back to the server.

Figure 1 shows how the communication between internet,
webcrawler’s instances and the PostgreSQL server.

The choice of URLs to be fetched is made by one SQL
query and two PL/pgSQL additive scoring functions: one
scores the URL according to its content, the other scores
the URL according to the textual context in which they
are linked. The programmer can thus easily implement any
focused crawling strategy by modifying a single SQL fetch
query and two scoring functions. The user can write them in
PL/pgSQL in order to take advantage for instance, of Post-
greSQL regular expressions. In order to achieve even better
performance, he might also write them in C-language and
take benefit of PostgreSQL’s dynamic loadable objects capa-
bility. Figures 2 and 3 show a scoring function in PL/pgSQL
that calculates a weighted count of keywords occuring in the
URL itself (Figure 2) or in the anchor text that links to it
(Figure 3).

Each crawler instance is only responsible for downloading
and processing web pages. The downloading stage is per-

5http://www.postgresql.org/

CREATE OR REPLACE FUNCTION
ScoreURL(url url) RETURNS bigint AS
$$
DECLARE
score INT;
normurl TEXT;
BEGIN
normurl=normalize(CAST(url AS text));
IF CAST(url_top(url) AS TEXT) =’fr’ THEN
score=1;
ELSE
score=0;
END IF;
IF substring(normurl, ’keyword1’) IS NOT NULL THEN
score=score+2;
END IF;
IF substring(normurl, ’keyword2’) IS NOT NULL THEN
score=score+1;
END IF;
RETURN score;
END;
$$ LANGUAGE plpgsql;

Figure 2: A Webcrawler strategy written in
PL/PGSQL : scoring URLs

CREATE OR REPLACE FUNCTION
ScoreLink(context text) RETURNS int AS
$$
DECLARE
score INT;
normcontext TEXT;
BEGIN
normcontext=normalize(context);
score=0;
IF (substring(normcontext, ’keyword1’) IS NOT NULL) THEN
score = score +1;
END IF;
IF (substring(normcontext, ’keyword2’) IS NOT NULL) THEN
score = score +1;
END IF;
RETURN score;
END;
$$ LANGUAGE plpgsql;

Figure 3: A Webcrawler strategy written in
PL/PGSQL : scoring links



formed by the very matureGNU/Wget utility6. The database
system is responsible for the coordination of multiple crawlers
(thanks to SQL transactions), uniqueness of stored URLs
and links (thanks to SQL constraints), crawling strategy
(thanks to PL/pgSQL or C functions), etc. Insertions into
a single SQL view triggers insertions into the more complex
internal table structure.

3. USE CASE: COVERAGE OF "TWEETED"
URLS

3.1 Context
Recent open free network visualisation tools have made eas-
ier the qualitative analysis of large social networks[1]. Based
on these tools, scientists in humanities can visualize large re-
lational data which leads to new hypothesis that will require
further network crawling and data extraction. We show an
example of such interaction between humanities and com-
puter scientists made possible by our YeSQL crawler.

Political scientists have formulated the hypothesis that for
the 2012 French presidential elections, candidates’ commu-
nication departments accepted Twitter as a target media
and integrated it to their communication system.

Their strategy was to better control their communication
and to improve the dissemination of political messages they
convey, in order to influence public opinion. What was at
stake ? The saturation and the meshing of the media sphere,
with coherent messages whatever the channel of dissemina-
tion they choose.

The empowerment of their communication during the cam-
paign was linked to their capacity :

• to consolidate their network of opinion leaders thanks
to Twitter,

• to be more reactive and to communicate “just in time”
if unexpected events occur,

• to strengthen the efficiency of their activists network.

As a consequence, the relationships between their different
communication devices has to be analysed.

3.2 Experiment
In order to evaluate this hypothesis, we conducted a cap-
ture of tweeter messages and a parallel though independent
web crawl of candidate web sites and newspaper’s political
pages. We then attempted to compare the two data sources.
Twitter’s markers (e.g. ’#’ and ’@’) facilitates the produc-
tion of statistics on a given collection. Regarding the web,
drawing statistics require a very well structured crawl, with
good identification of identical URL and page contents. The
YeSQL web crawler proved well suited to this task.

By filtering tweets from candidates, to candidates or men-
tioning a candidate (e.g. @fhollande, @bayrou, @melan-
chon2012, @SARKOZY 2012, etc.), we recorded 93592 tweets
from february 6th at 00:00am to february 13th 2012 at 00:00am.

6http://www.gnu.org/software/wget/

Depth # crawled % URLs % URLs
URLs covered (a) covered (b)

0 2 0.00 0.00
1 34 0.08 1.00
2 1026 0.73 4.00
3 8543 1.84 8.00
4 56883 3.06 12.00
5 368247 7.33 27.00
6 2756671 15.28 40.00

Table 1: Tweeted URLs’ coverage. (a): for all 4777

tweeted URLs ; (b): for the top 100 most frequently

tweeted URLs. “Depth” is the minimum number of hy-

perlinks that one has to follow to reach an URL from the

initial set.

26638 of those tweets contained a shortened URL (28.4%)
from a set of 10447 unique shortened URL corresponding to
4777 unique effective URLs.

This filtering produced a homogeneous corpus based on a
usage logic and identical enonciation rules. The reference
to candidates’ addresses produces a multi-voiced discourse
folded up on the proper space of Twitter. Each “tweeted”
URL is functioning as an interface with the outside of this
space and brings back external information from the media
space. Their identification is important as a marker of dis-
course evolution and also for its anchorage in the media and
political topicality .

Independently from this collection, we started a web crawler
instance that was allowed to download 20 pages in parallel,
from february 20th at 00:00am to february 26th at 10:55pm.
It was initiated on 32 initial URLs from newspapers’ polit-
ical pages and candidates’ web sites and collected over 2.7
millions of URLs. In the following tables, we call ”depth”
the minimum number of links needed to navigate from an
initial URL (depth=0) to a crawled URL.

Table 1 shows the proportion of tweeted effective URLs than
were crawled during this period. The fourth column shows
that more frequently tweeted URLs are more likely to be
covered by the crawl. These results show that most popular
URLs have a significant probability to be directly retrieved
by the crawler after millions of URLs have been crawled.

Figure 2 shows the proportion of tweeted URLs found in the
crawling per tweeted frequency (number of times that the
URL was tweeted). This gives an estimation of the crawling
coverage with regard to URL’s visibility.

Table 2 shows that the similar problem of tweeted domains
instead of tweeted URLs is substantially easier. Indeed, the
coverage is noticeably higher when only the URL’s domains
are considered. In particular, 100 most tweeted domains are
almost totally (97.73%) covered by the web crawl.

More generally, we can observe that high “domain” coverage
figures are obtained for relatively low “depth” levels. This
suggests that the most popular URLs originates from sites
that are the near neighbours of the 32 initial newspapers’
political pages and candidates’ web sites.



Figure 4: Crawler coverage per tweeted URL fre-
quency.

Depth # crawled % domains % domains
domains covered (a) covered (b)

0 1 0.00 0.00
1 31 2.50 18.18
2 95 4.43 29.55
3 312 11.93 50.00
4 1596 27.73 81.82
5 8137 49.66 95.45
6 45992 72.50 97.73

Table 2: Tweeted URLs’ domain coverage. (a): for

all 4777 tweeted URLs ; (b): for the top 100 most fre-

quently tweeted URLs. “Depth” is the minimum number

of hyperlinks that one has to follow to reach an URL from

the initial set.

This is not surprising considering that the web of political
blogs is stable along month periods [2]. Moreover, all main
French newspaper offer a blog service to their readers. The
readers contributions to their websites allow them to capture
most of the queries on the web dealing with politics.

Results in Table 2 also allow us to expect much better cover-
age of URLs by simply launching more crawler’s instances,
on a single or on multiple machines.

4. CONCLUSION
We have shown that recent functionalities introduced in
PostGreSQL about data structures, triggers and language
programming allow to develop powerful web mining tools
that can deal with highly redundant data as well as with low
frequent signals. We illustrated this with a scalable crawler
that can explore web networks at a fine grained level. In par-
ticular, this crawler can help in comparing of web to social
networks like Twitter.

In this particular configuration and for this domain, cur-
rent events about the electoral campaign irrigates the two
information spaces, the web and Twitter. The practice of
“tweeting”URLs becomes customary in the context of mod-
ern approaches of information reporting and monitoring.

As we entered this field of investigation by studying the po-
litical “actors”, we saw that a significant part of original
informations are produced, published and tweeted by these
actors.

We could also question the existence of significant reporting
practices outside the control of political apparatus’ . dis-
semination strategies. If our results are confirmed in finer
grain analysis, we will be able reconsider the self-organising
hypothesis that people tend to associate to social networks.

5. REFERENCES
[1] W. W. Cohen and S. Gosling, editors. Proceedings of

the Fourth International Conference on Weblogs and
Social Media, ICWSM 2010, Washington, DC, USA,
May 23-26, 2010. The AAAI Press, 2010.

[2] J.-P. Cointet and C. Roth. Local networks, local topics:
Structural and semantic proximity in blogspace. In
Cohen and Gosling [1].

[3] G. M. Roy. Perspectives on NoSQL. In PGcon 2010:
PostgreSQL Conference for Users and Developers,
Ottawa, Canada, 2012.


