
!"#$"%&'(#)*+",-'."*#/0(1#2""3#
$0',%4#5#

Ludovic Bonnefoy*, Romain Deveaud* and Patrice Bellot**

* LIA Ð University of Avignon

** LSIS Ð Aix-Marseille University

- !'#("6#"+#7#8"%&'(#9#:'6'#';'&('<(0#
Ð!=80,>?0*0,'60:#%"*60*6@#:0:&%'60:#6"#"640,8#
Ð!,'.*?8@#,0;&0A8#'*:#6'?8#+,"-#B-'C"*#%",1=8#

Ð!+,&0*:8@#?,"=18@#,'.*?8@#,0;&0A8#'*:#6'?8#+,"-#
=80,#1,"D(08#

- !',0#640E#=80+=((#+",#<""3#80',%45#
#

)*6,":=%."*#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# F#

G=6(&*0#

- !)*6,":=%."*#
#
- !H8&*?#8"%&'(#&*+",-'."*#+",#<""3#80',%4#

Ð!I":0(&*? #<""3#(&30(&*088#
Ð!2""3#640-'.% #,0('60:*088#

Ð!B((#B-'C"*J8 #8"%&'(#
#

- !K"*%(=8&"*8#'*:#+=6=,0#A",3 #

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# L#

I',3";# M'*:"- #N&0(:#+",#)M#

- !A0&?4.*?#O=0,E#60,-8#[Metzler2005]#
Ð!=*&?,'- #-'6%408#
Ð!<&?,'- #0P'%6#-'6%408#

Ð!<&?,'- #-'6%408#A&64&*#'*#=*",:0,0: #A&*:"A #"+#Q#
60,-8#

#
#

>! RS#T#UVQW@#RG#T#UVXU@#RH#T#UVUW#
#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6#
Y#

2""3#(&30(&*088#

- !:"%=-0*68#',0#B-'C"*Z[&<,',ES4&*?#1'?08#
Ð!=80,8#%"--0*6#'*:# ,0;&0A#'*:#,'60#1,":=%68#

- !&*6=&."*#\X]#'#4&?4#,0;&0A0:#1,":=%6#-=86#<0#
,0(0;'*6#
Ð!",#'6#(0'86#1"1=(', VVV#
Ð!^'?0M'*3>(&30#[Bao2007]#

- !&*6=&."*#\F]#'#4&?4#,'60: #1,":=%6#-=86#<0#
,0(0;'*6#

#
#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6#

2 Retrieval Model

2.1 Sequential Dependence Model

We used a language modeling approach to retrieval [2]. We use Metzler and
CroftÕs Markov Random Field (MRF) model [3] to integrate multiword phrases in
the query. SpeciÞcally, we use the Sequential Dependance Model (SDM), which is
a special case of the MRF. In this model three features are considered: single term
features (standard unigram language model features,f T), exact phrase features
(words appearing in sequence,f O) and unordered window features (require words
to be close together, but not necessarily in an exact sequence order,f U).

Finally, documents are ranked according to the following scoring function:

scoreSDM (Q, D) = ! T

!

q∈Q

f T (q, D)

+ ! O

|Q|−1!

i =1

f O (qi , qi +1 , D)

+ ! U

|Q|−1!

i =1

f U (qi , qi +1 , D)

where the features weights are set according to the authorÕs recommendation
(! T = 0 .85, ! O = 0 .1, ! U = 0 .05). f T , f O and f U are the log maximum likelihood
estimates of query terms in documentD , computed over the target collection
with a Dirichlet smoothing.

2.2 Modeling book likeliness

The basic idea behind this likeliness is that if a book has a lot of reviews and if
its ratings are generally good, then it must be a very good book.

L (D) = log(# reviews(D)) !

"
r ∈R D

r

reviews(D)

where R D is the set of all ratings given by the users for the bookD, and
reviews(D) is the number of reviews.

We further rerank the books by weighting the previously computed SDM
with the likeliness score. The scoring function of a bookD given a query Q is
thus deÞned as follows:

s(Q, D) = L (D) ! scoreSDM (Q, D)

2.3 Modeling book thematic relatedness

We want to represent each query Q by a thematic proÞle and rank books ac-
cording to their relatedness to it. For this Þrst attempt at using thematic (or

W#

2""3#(&30(&*088#_F`#

#
- !?&;0*#'#7#<""3#*00: #9#a@#640#8%",0#"+#'*#

B-'C"*Z [&<,',ES4&*?#:"%=-0*6#!#&8]#
#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6#

2 Retrieval Model

2.1 Sequential Dependence Model

We used a language modeling approach to retrieval [2]. We use Metzler and
CroftÕs Markov Random Field (MRF) model [3] to integrate multiword phrases in
the query. SpeciÞcally, we use the Sequential Dependance Model (SDM), which is
a special case of the MRF. In this model three features are considered: single term
features (standard unigram language model features,f T), exact phrase features
(words appearing in sequence,f O) and unordered window features (require words
to be close together, but not necessarily in an exact sequence order,f U).

Finally, documents are ranked according to the following scoring function:

scoreSDM (Q, D) = ! T

!

q! Q

f T (q, D)

+ ! O

|Q|" 1!

i =1

f O (qi , qi +1 , D)

+ ! U

|Q|" 1!

i =1

f U (qi , qi +1 , D)

where the features weights are set according to the authorÕs recommendation
(! T = 0 .85, ! O = 0 .1, ! U = 0 .05). f T , f O and f U are the log maximum likelihood
estimates of query terms in documentD , computed over the target collection
with a Dirichlet smoothing.

2.2 Modeling book likeliness

The basic idea behind this likeliness is that if a book has a lot of reviews and if
its ratings are generally good, then it must be a very good book.

L (D) = log(# reviews(D)) !

"
r ! R D

r

reviews(D)

where R D is the set of all ratings given by the users for the bookD, and
reviews(D) is the number of reviews.

We further rerank the books by weighting the previously computed SDM
with the likeliness score. The scoring function of a bookD given a query Q is
thus deÞned as follows:

s(Q, D) = L (D) ! scoreSDM (Q, D)

2.3 Modeling book thematic relatedness

We want to represent each query Q by a thematic proÞle and rank books ac-
cording to their relatedness to it. For this Þrst attempt at using thematic (or

b#

2""3#S40-'.% #M0('60:*088#

- !<""3#80',%4#,08=(68#0P10%60:#<E#'#=80,#84',0#
('60*6#640-'.%8#

- !64080#('60*6#640-'.%8#',0#0P1,0880:#64,"=?4##
=80,8#6'?8#

- !?&;0*#'#=80,#7#<""3#*00: #9@#&*+0,#640#
640-'.%8#'*:#,06,&0;0#<""38#64'6#84',0#640#
8'-0 #6"1&%#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# c#

2""3#S40-'.% #M0('60:*088#_F`#

- !<=&(:#'#6'?#1,"D(0#+",#0'%4#<""3#

- !'#d>&:+#A0&?460:#;0%6",#"+#6'?8#

- !d#]#*=-<0, #"+#.-08#640#6'?#&8#'88"%&'60:#6"#640#
<""3#

- !:+#]#*=-<0, #"+#<""38#A4&%4#4';0#64&8#6'?#
'88"%&'60:#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# Q#

2""3#S40-'.% #M0('60:*088#_L`#

- !%"*86,=%6#'#6'?#1,"D(0#+",#640#O=0,E#A&64#'#
^MN#'11,"'%4 #

- !86'*:',:#,0(0;'*%0#-":0(# A&64#'((#O=0,E#
A",:8 #

- !6"1#P#:"%=-0*68#=80:#+",#<=&(:&*?#640#1,"D(0#
_P#T#LU#+",#"=, #"e%&'(8#,=*8`#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# f#

2""3#S40-'.% #M0('60:*088#_Y`#

- !A0&?46#"+#6'?8#&*#O=0,E#6'?#1,"D(0#]##
##

#######!"#$%&'&&

&

- !<""38#-'E #4';0#6"#%"*6,&<=60#6"#640#A0&?46#"+#
'#6'?#'%%",:&*?#6"#640&,#,0(0;'*%0#6"#640#O=0,E#

#######

###!"#$%&'&&

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6#

topic) relatedness we choosed to rely exclusively on user tags associated with the
books in the collection. We consider as a thematic proÞle a set of tags weighted
according to their signiÞcance for Q and we call it a tag proÞle (TP). As a pre-
processing step, a tag proÞle is associated to each book in the collection. Tags
are weighted according to a classic tf.idf measure (where the tf is the number of
users who associated the tag to the book).

The main issue is to estimate a tag proÞle for a query. To construct it, inspired
by the pseudo relevance feedback method, we summed the proÞle of thex top
ranked books retrieved by mean of a information retrieval model (more details
in runs section). Once the queryÕs tag proÞle is build, we can compare bookÕs
tag proÞle to it with a vector similarity measure like the cosinus.

Finally, books of the collection are ranked according to the similarity of their
proÞle to the queryÕs one.

3 Runs

We submitted 4 runs for the Social Search for Best Books task. We used Indri2 for
indexing and searching. We did not remove any stopword and used the standard
Krovetz stemmer.

mrf-booklike This run is the implementation of the SDM model described in
Section 2.1 with the likeliness score.

IOT30 and IT30 Those two runs are based on the tag proÞle approach pre-
sented in Section 2.3. In this approach four parameters have to be Þxed : The
number x of top ranked books used to build the queryÕs tag proÞle, the weight
given to each tag in queryÕs proÞle, the information retrieval model used to re-
trieved books and the similarity measure to compare proÞles. For both runs,
x is Þxed to 30, IndriÕs language modeling approach is used and the similarity
measure is the cosinus angle between vectors.

The last parameter is the weight given to each tag of the query proÞle. For
the IOT30 run, the t i tagÕs weight is compute as the sum of its tf.idf weight in
each of the topx books returned by Indri:

w(t i) =
!

b! T opx

tf.idf (t i , b)

where b is one theT opx books retrieved.
However, we had the intution that all selected books can not contribute

equally to the weight of a tag. So, for the IT30 run, we combine the tf.idf of a
tag in a book with the relevance of this book according to the retrieval model
used in order to penalize contribution of less relevant books:

w(t i) =
!

b! T opx

tf.idf (t i , b) ! score(b, Q)

2 http://www.lemurproject.org

topic) relatedness we choosed to rely exclusively on user tags associated with the
books in the collection. We consider as a thematic proÞle a set of tags weighted
according to their signiÞcance for Q and we call it a tag proÞle (TP). As a pre-
processing step, a tag proÞle is associated to each book in the collection. Tags
are weighted according to a classic tf.idf measure (where the tf is the number of
users who associated the tag to the book).

The main issue is to estimate a tag proÞle for a query. To construct it, inspired
by the pseudo relevance feedback method, we summed the proÞle of thex top
ranked books retrieved by mean of a information retrieval model (more details
in runs section). Once the queryÕs tag proÞle is build, we can compare bookÕs
tag proÞle to it with a vector similarity measure like the cosinus.

Finally, books of the collection are ranked according to the similarity of their
proÞle to the queryÕs one.

3 Runs

We submitted 4 runs for the Social Search for Best Books task. We used Indri2 for
indexing and searching. We did not remove any stopword and used the standard
Krovetz stemmer.

mrf-booklike This run is the implementation of the SDM model described in
Section 2.1 with the likeliness score.

IOT30 and IT30 Those two runs are based on the tag proÞle approach pre-
sented in Section 2.3. In this approach four parameters have to be Þxed : The
number x of top ranked books used to build the queryÕs tag proÞle, the weight
given to each tag in queryÕs proÞle, the information retrieval model used to re-
trieved books and the similarity measure to compare proÞles. For both runs,
x is Þxed to 30, IndriÕs language modeling approach is used and the similarity
measure is the cosinus angle between vectors.

The last parameter is the weight given to each tag of the query proÞle. For
the IOT30 run, the t i tagÕs weight is compute as the sum of its tf.idf weight in
each of the topx books returned by Indri:

w(t i) =
!

b! T opx

tf.idf (t i , b)

where b is one theT opx books retrieved.
However, we had the intution that all selected books can not contribute

equally to the weight of a tag. So, for the IT30 run, we combine the tf.idf of a
tag in a book with the relevance of this book according to the retrieval model
used in order to penalize contribution of less relevant books:

w(t i) =
!

b! T opx

tf.idf (t i , b) ! score(b, Q)

2 http://www.lemurproject.org

XU#

2""3#S40-'.% #M0('60:*088#_W`#

- !640#6"1#XUUU#<""38#,06,&0;0:#',0#
,0,'*30: #

- !%"8&*0#8&-&(',&6E#<06A00*#640#6'?#1,"D(0#
"+#640#O=0,E#'*:#640#6'?#1,"D(0#"+#0'%4#
<""3#

#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XX#

2""3#S40-'.% #M0('60:*088#]##
"640,#0P10,&-0*68#

- !=8&*?#640#6'?8#+,"-#=80,#1,"D(08#

- !=80,8#'::#<""38#6"#640&,#%'6'("?=0#'*:#806#
640&,#"A*#6'?8#

- !0P10,&-0*68#"*#640#6,'&*&*?#806#_FXX#6"1&%8`#
Ð!10,+",-'*%0#:0%,0'80:#<E#WUg#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XF#

2""3#S40-'.% #M0('60:*088#]##
"640,#0P10,&-0*68#_F`#

- !!0A0E#%('88&D%'."*#]#PPPVEEE#

- !!0A0E#1,"D(08#&*860':#"+#6'?#1,"D(08#
Ð!'#<""3#:0A0E#1,"D(0#]#hPPP#T#X@#EEETXi#

#
- !0P10,&-0*68#"*#640#6,'&*&*?#806#_FXX#6"1&%8`#

Ð!10,+",-'*%0#:0%,0'80:#<E#cUg#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XL#

B((#B-'C"*J8 #8"%&'(#

- !=8&*?#,'.*?8@#,0;&0A8#'*:#6'?8#+,"-#B-'C"*#
%",1=8#

- !%"-<&*&*?#S40-'.% #'*:#2""3#[&30(&*088#
Ð!("?&8.%#,0?,088&"*#]##

¥!640#6A"#8%",08#'8#+0'6=,08#
¥!6A"#%('8808#]#,0(0;'*6#",#*"6#

Ð!6,'&*&*?#806#]#6"1#LU#,08=(68#,06=,*0:#<E#<"64#
'11,"'%408#

Ð!,0(0;'*%0#j=:?0-0*68 #+,"- #FUXX#!"#$%&&&

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XY#

Ge%&'(#FUXF#k;'(='."*#

U#

UVUW#

UVX#

UVXW#

UVF#

UVFW#

UVL#

UVLW#

UVY#

*!KlmXU# ^mXU# M0%&1#,'*3#M0%'((mXU#

<086#,=*#FUXF#

'((n8"%&'(#

-,+><""3(&30#

6'?8n%"8&*0#

6'?8n%"8&*0n:"%1,"<#

-,+#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XW#

H*"e%&'(#k;'(='."*#"*#FUXX#
[&<,',ES4&*?#j=:?0-0*68 #

U#

UVX#

UVF#

UVL#

UVY#

UVW#

UVb#

*!KlmXU# ^mXU# M0%&1#,'*3#

<086#,=*#FUXX#

'((n8"%&'(#

-,+><""3(&30#

6'?8n%"8&*0#

6'?8n%"8&*0n:"%1,"<#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# Xb#

G=6(&*0#

- !)*6,":=%."*#
#
- !H8&*?#8"%&'(#&*+",-'."*#+",#<""3#80',%4#

Ð!I":0(&*? #<""3#(&30(&*088#
Ð!2""3#640-'.% #,0('60:*088#

Ð!B((#B-'C"*J8 #8"%&'(#
#

- !K"*%(=8&"*8#'*:#+=6=,0#A",3 #

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# Xc#

K"*%(=8&"*8#'*:#+=6=,0#A",3 #

- !!"#8"%&'(#&*+",-'."*#40(1#<""3#80',%45###
Ð!E08#<=6#4"A#-=%4#&8#:&e%=(6#6"#08.-'60 ##
Ð!640#'*8A0, #800-8#6"#:010*: #'#("6#"+#640#0;'(='."* #

:'6'806 #=80:#

- !8"%&'(#,'.*?8#'*:#,0;&0A8#',0#?"":#&*:&%'6",8#"+#
640#&*60,086#"+#'#<""3#

- !<""38#6'?8#%'*#<0#=80:#6"#-":0(#('60*6#640-'.%8#
"+#'#=80,#O=0,E#'*:#6"#?=&:0#<""3#80',%4#
Ð!8"%&'(#]#X##Z##:0A0E#]#U#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# XQ#

K"*%(=8&"*8#'*:#+=6=,0#A",3 #_F`#

- !'#("6#"+#7#8"%&'(#9#:'6'#,0-'&*8 #=*0P1("&60:#
Ð!,'.*?8@#,0;&0A8#'*:#6'?8#+,"-#B-'C"*#%",1=8#
Ð!+,&0*:8@#?,"=18@#,'.*?8@#,0;&0A8#'*:#6'?8#+,"-#

=80,#1,"D(08#

!"#$"%&'(#)*+",-'."*#/0(1#2""3#$0',%4#5#>#2"**0+"E@#!0;0'=:#'*:#20(("6# Xf#

#
#
#

64'*3#E"=#+",#E"=,#'o0*."*#

