Audio Summarization with Audio Features and
. . Probablllty Distribution D|vergence
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“Introduction

e Audio summarization of massive online multimedia resources.
e Facilitate the understanding.

e Extractive audio summarization approaches: 9 -audio features

{ - textual methods
- hybrid

e Our proposition:
- Represent the information within the text in terms of its audio
features.

- Hybrid during training phase; text independent during summary
creation.
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- Audio features (275 MFCC + 2 ) & textual information.
- Mapping between audio features X and an informativeness value Y.
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e Audio summary creation:
- Audio features (275 MFCC + 2 ) & textualinformation.

- A score §, is computed to rank the pertinence of each segment O...0
- Segments with higher S, scores are chosen until 0 is reached.
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Experiments & Results

Training of Informativeness model

e 5,989 audio broadcasts ( 310 hours) in French, English and Arabic.

e Automatically obtained transcripts are treated with a stemming process.

e A linear least squares regression model is trained to map the audio
features X of 111,600 training samples into an informativeness scoreY'.
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Fig. 1: Informativeness model scheme
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Fig. 2: Summary creation scheme

SCORING

1 3m19s 8 4.20 2.90
2 |5m21s 13 3.50 278
Score Explanation 3 omd7s 5 380 376
5 Full informative |
4  Mostly informative 4 |Imds 5 60 | 29>
3 Half informateive S |8md/s 22 467 3.68
2 Quite informative 6 | 9m4S5s 30 4.00 2.49
1 Not informative 7 |5m23s 8 3.20 3.75
Table 1: Evaluation scale 8 | 6m24s 20 3.7 2.84
9 |7m35s 18 3.7 3.19
10 |2m01s 4 275 263
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e Mapping informativeness from Mel-frequency Cepstral Coefficients
(MFCC) features to their corresponding Jensen-Shannon (JS) divergence
help to select those segments which are more relevant to the audio
summary.

Original approach; hybrid during training phase but text independent
while creating summaries.

It manages to generate at least half informative extractive summaries.
Not a clear correlation between the quality of a summary and the
quality of its parts.

Future work will consider bigger evaluation datasets as well as French
and Arabic summarization.
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